Shape Control of Colloidal Cu2–xS Polyhedral Nanocrystals by Tuning the Nucleation Rates
نویسندگان
چکیده
Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions.
منابع مشابه
C2nr31054f 3625..3628
Understanding the coupled kinetic and thermodynamics factors governing colloidal nanocrystals nucleation and growth are critical factors in the predictable and reproducible synthesis of advanced nanomaterials. We show that the temporal temperature profile is decisive in tuning the particle shape from pseudo-spherical to monodisperse cubes. The shape of the nanocrystals was characterized by tran...
متن کاملTiming matters: the underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis.
Understanding the coupled kinetic and thermodynamics factors governing colloidal nanocrystals nucleation and growth are critical factors in the predictable and reproducible synthesis of advanced nanomaterials. We show that the temporal temperature profile is decisive in tuning the particle shape from pseudo-spherical to monodisperse cubes. The shape of the nanocrystals was characterized by tran...
متن کاملColloidal synthesis of germanium nanocrystals
In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...
متن کاملContinuous Size Tuning of Monodisperse ZnO Colloidal Nanocrystal Clusters by a Microwave-Polyol Process and Their Application for Humidity Sensing
Over the past decade, formation of monodisperse colloidal nanocrystals with size and shape control has been intensively pursued. This topic is of key importance for elucidating unique size/shape-dependent physiochemical properties and for applications in optoelectronics, sensing, catalysis, crystallization, and mineralization. Currently, a major research direction appears to be shifting to crea...
متن کاملControllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
Self-doped Cu2-xS nanocrystals (NCs) were converted into monodisperse Cu2-xS-Au2S NCs of tunable composition, including pure Au2S, by cation exchange. The near-infrared (NIR) localized surface plasmon resonance (LSPR) was dampened and red-shifted with increasing Au content. Cation exchange was accompanied by elimination of cation vacancies and a change in crystal structure. Partially exchanged ...
متن کامل